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If a critical system is confined to a finite geometry, critical fluctuations of the order parameter generate
long-ranged forces between the system boundaries. These forces, commonly known as Casimir forces, are
characterized by universal amplitudes and scaling functions. A hybrid Monte Carlo algorithm has been devised
and used to measure the Casimir amplitudes directly and accurately. We apply the algorithm to a critical
q-state Potts model confined to a rectangularM3L geometry ind52 dimensions and to a critical Ising model
confined to aM23L geometry ind53 dimensions. We find good agreement with rigorous results ind52 and
compare our results with field-theoretic estimates of the Casimir amplitude ind53.

PACS number~s!: 64.60.Fr, 05.70.Jk, 68.35.Rh

I. INTRODUCTION

One of the most fundamental discoveries in the theory of
electromagnetism dates back to the year 1948, when the
Dutch physicist H. B. G. Casimir realized that two metallic
plates placed parallel to one another at a distanceL in
vacuum experience an attractive force@1#. According to the
modern view of this effect, which had also been proposed by
Casimir, the metallic plates impose boundary conditions on
the zero-point fluctuations of the electromagnetic field
thereby imposing anL dependence on the fluctuation spec-
trum. This in turn gives rise to anL dependence in the total
energy Eof the configuration. Likewise,thermalfluctuations
of the electromagnetic field at high temperatures introduce a
similar L dependence to the configuration energy@2#. Spe-
cifically, in the limit of large cross-section areasA of the
plates one obtains@1,2#
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wherez~3!.1.202 is a special value of the Riemannz func-
tion. Note, that the dimensionless amplitudes in Eq.~1.1!
are given by the corresponding amplitudeD
5222dp2d/2NG(d/2)z(d) of a massless~i.e., critical!
Gaussian field theory@3,4# for N52 components ind54 and
d53 dimensions, respectively.

Several years after Casimir’s discovery a general theory
of these so-called dispersion forces in layered dielectrics was
formulated @5# yielding a unified picture of the Casimir
forces and the well known van der Waals forces@6#. It was
already noted in Ref.@5# that the dispersion forces play an
important role in the vast realm of the wetting phenomena
@7#. In the simplest case a wetting transition leads to the
formation of a macroscopically thick liquid layer on the sur-
face of a homogeneous plane substrate which is exposed to
the vapor of the wetting agent. The combined substrate-
liquid-vapor system then has the structure of the layered di-
electrics considered in Ref.@5#. The equilibrium thickness of

the wetting layer is determined by the minimum of the so-
called effective interface potentialV as function of apre-
scribedthicknessl @7#

lim
A→`

V~T,l !

A
5v~ l !5 l @r l~T!/rv~T!21#p0~T!dp1ssl~T!

1s lv~T!1dv~T,l !, ~1.2!

whereA is the interfacial area,r l(T) andrv(T) denote the
liquid and the vapor density, respectively,p0(T) is the vapor
pressureat liquid-vapor coexistence, anddp is a dimension-
less measure of the undersaturation of the vapor. The
substrate-liquid and liquid-vapor interfacial tensionsssl(T)
and s lv(T) do not depend onl , and dv(T,l ) contains the
contribution of the van der Waals forces which has the as-
ymptotic form @8#

dvvdW~ l !5 HWl221O ~ l23! ~nonretarded!
Wrl

231O ~ l24! ~retarded!, ~1.3!

where the weak temperature dependence of the Hamaker
constantsW andWr has been disregarded. Note, that accord-
ing to Eq. ~1.2! with dv( l )5dvvdW( l ) one obtains
L}(dp)21/3 for the equilibrium thicknessL for the nonre-
tarded van der Waals forces. This power law crosses over to
L}(dp)21/4 for dp→0 because the van der Waals forces
become retarded asL increases.

According to the mechanism underlying the Casimir ef-
fect in electromagnetism, critical fluctuations of the order
parameter at a critical point of a wetting agent generate an
additional long-ranged force which contributes todv( l ) @see
Eq. ~1.2!#. One finds@9#

dv~Tc ,l !5dvvdW~ l !1kBTcD l
2~d21! ~1.4!

in d dimensions, whereD is theuniversalCasimir amplitude,
andTc is the critical temperature. Therefore one expects a
critical effect on the equilibrium layer thicknessL, e.g., in
the vicinity of thel transition in4He @10# and near critical
points of the demixing transition in the binary mixtures
@11,12#. The Casimir amplitudeD in Eq. ~1.4! is exactly
known for the critical Ising and three-state Potts models in
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d52 dimensions@13#. However, ind53, which is the ex-
perimentally relevant case,D can only be estimated@9,14#.

We have devised a hybrid Monte Carlo algorithm which
allows us to measure the Casimir amplitudeD of a critical
lattice modeldirectlywith considerable accuracy. The avail-
ability of rigorous results forD for the criticalq-state Potts
model ind52 for q52 andq53 for all possible boundary
conditions @13# provides the testing ground for the Monte
Carlo algorithm presented here. For this purpose we restrict
ourselves to the case of cyclic, i.e., closed boundary condi-
tions, for which the free energy does not contain surface
contributions@see Eq.~1.2!#. The presence of surface contri-
butions to the free energy especially in the case of applied
surface fields requires additional customization of the algo-
rithm which will not be discussed here.

The remainder of this paper is organized as follows. In
Sec. II we present the lattice models we use for the simula-
tion and give a detailed account of the Monte Carlo algo-
rithm. Section III is devoted to the application of the algo-
rithm to the criticalq-state Potts model forq52, 3, and 4 in
a rectangular geometry for various aspect ratios ind52. In
Sec. IV we present the first results for the critical Ising model
confined to a slab geometry ind53. Finally we summarize
our results in Sec. V.

II. LATTICE MODELS AND MONTE CARLO METHOD

For our investigation of the Casimir effect in two-
dimensional critical systems belonging to theq-state Potts
universality class we consider the ferromagneticq-state Potts
model with nearest neighbor interactions on a square lattice
without external fields. Using the standard Kronecker-d rep-
resentation for the interaction between neighboring Potts
spinss~r ! ands~r 8! we may write the model Hamiltonian as

H$s%52J (
^r ,r8&

ds~r !,s~r8! , ~2.1!

where r5(x,y), r 85(x8,y8) denote lattice sites and
s~r !P$1,2,...,q%. The coupling constantJ is positive and the
angular bracketŝr ,r 8& denote a nearest neighbor pair. The
geometry of the lattice underlying Eq.~2.1! is chosen to be
rectangular withM3L lattice sites andM>L. Along thex
direction we always apply periodic boundary conditions, i.e.,
the spinss(M ,y) ands~1,y! are treated as nearest neighbor
pairs with the interaction strengthJ. Along the y direction
the boundary conditions are varied according to the case un-
der consideration. The critical point of the ferromagnetic
q-state Potts model on an infinite square lattice is located at
its self-dual point, which for the model defined by Eq.~2.1!
is given by@15#

~eKc21!25q, ~2.2!

whereKc5J/(kBTc) andTc denotes the critical temperature.
In the three-dimensional case we consider the ferromag-

netic spin-12 Ising model on a simple cubic lattice with near-
est neighbor interaction, which is the standard representative
of the Ising universality class. In the absence of external
fields we use the Hamiltonian in the form

H$s%52J (
^r ,r8&

s~r !s~r 8!, ~2.3!

wherer5(x,y,z), r 85(x8,y8,z8) denote the lattice sites and
s~r !561 for convenience. The geometry of the lattice un-
derlying Eq. ~2.3! is a slab containingM23L lattice sites
andM>L. Along the x and y direction we always apply
periodic boundary conditions in the same sense as described
above. The boundary conditions along thez direction vary
according to the situation to be studied. The position of the
critical point of the model defined by Eq.~2.3! on an infinite
simple cubic lattice has been conjectured to be given by@16#

tanhKc5~A522!cos
p

8
, ~2.4!

whereKc is defined as in Eq.~2.2!. The critical temperature
according to Eq.~2.4! is given byKc50.221 658 6... which
agrees to within five to six digits with the estimates forKc
from the series expansions and recent Monte Carlo simula-
tions @17#.

There have been several previous attempts to access the
critical finite-size amplitudes by Monte Carlo simulations
@18,19# ~see Ref.@20# for a detailed review!. In the most
recent one@19# the critical finite-size amplitude of the free
energy of an Ising model has been related to the order pa-
rameter distribution function, which can be probed directly
by Monte Carlo simulations. In Ref.@19# a cubic geometry,
i.e., M5L with purely periodic boundary conditions has
been used. In order to investigate the rectangular or the slab
geometry on which we will focus here, we have basically
followed the approach outlined in Ref.@18#, where the ge-
ometry itself is changed as a function of a parameterl in
order to probe the corresponding change of the free energy
directly. In the case of the critical Potts model in the rectan-
gular geometry ind52 and even values ofL this is accom-
plished by introducing a seam HamiltonianHseam$s% be-
tween the two rows of spins aty5 1

2L and y5 1
2L11 such

that thecombinedHamiltonianH$s%1Hseam$s% describes
two uncoupled Potts models, each on a square lattice with
M3 1

2L sites. One of these subsystems is endowed with pe-
riodic boundary conditions along they direction whereas the
other inherits the boundary conditions of the initial system
described by Eq.~2.1!. The interpolating Hamiltonian

Hl$s%5H$s%1lHseam$s%, ~2.5!

for 0<l<1 then describes all the intermediate stages in the
process of splitting the system into two decoupled sub-
systems. This procedure is graphically displayed in Fig. 1
showing the initial lattice model described byH0$s%5H$s%
@see Eqs.~2.1! and~2.5!#, an intermediate stage described by
Hl$s% according to Eq.~2.5! for 0,l,1 with additional far
reaching bonds, and the final stage described by Eq.~2.5! for
l51. The explicit construction of the seam Hamiltonian
Hseam$s% is very simple, so that we only quote its form for
the case of periodic boundary conditions along they direc-
tion. It reads
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Hseam$s%5J(
x51

M

@ds~x,L/2!,s~x,L/211!1ds~x,1!,s~x,L !

2ds~x,1!,s~x,L/2!2ds~x,L/211!,s~x,L !#. ~2.6!

For the Ising model ind53 the corresponding seam Hamil-
tonian is the natural three dimensional extension of Eq.~2.6!,
where only the interactions have to be replaced according to
Eq. ~2.3!.

The change in the free energyF at T5Tc , which corre-
sponds to the change in the geometry forl51 compared to
l50 ~see Fig. 1!, follows directly from elementary statistical
mechanics. It is given by

F $H1Hseam%2F $H%

52kBTc ln^exp~2Hseam/kBTc!&H , ~2.7!

where^•••&H denotes the thermal average with respect to the
HamiltonianH of the initial Potts model. In the limit of the
vanishing aspect ratios5M /L either of the free energiesF
in Eq. ~2.7! can be written in the form of Eq.~1.2! with V
replaced byF andA replaced byM in d52 and byM2 in
d53. According to the choice of the boundary conditions for
the split system~see Fig. 1! F $H% andF $H1Hseam% have

identical bulk and surface contributions which therefore can-
cel each other in Eq.~2.7!. Moreover, corrections to the criti-
cal surface or interfacial tensions due tofinite M @21# cancel
as well, provided effects due to the finite mesh size of the
lattice can be neglected. By evaluating the right-hand side
~rhs! of Eq. ~2.7! for sufficiently large lattices we thus probe
the critical finite-size part of the free energydirectly. Note,
that due to the short-ranged nature of the interaction in the
Potts model and in the Ising model according to Eqs.~2.1!
and ~2.3! the van der Waals contribution to Eq.~1.4! is re-
placed by a contribution containingexponentially small
terms.

If Da,b denotes the Casimir amplitude for boundary con-
ditions of typea andb imposed on the two boundaries of the
system, respectively, the left-hand side~lhs! of Eq. ~2.7! can
be directly related toDa,b and the Casimir amplitudeDper for
periodic boundary conditions. Using the standard decompo-
sition of the free energy in a slab geometry~see Eq.~1.2! and
Ref. @9#! we have for sufficiently largeM ,L and in the limit
of vanishing aspect ratios

F $H1Hseam%2F $H%5kBTc~Da,b12Dper!M /L
~2.8!

in d52 and

F $H1Hseam%2F $H%5kBTc~3Da,b14Dper!M
2/L2

~2.9!

in d53. By comparing Eqs.~2.8! and~2.9! with Eq. ~2.7! we
find the Casimir amplitudes are given by the thermodynami-
cal average on the rhs of Eq.~2.7!, which is directly acces-
sible in a Monte Carlo simulation. However, one must keep
in mind, that Eqs.~2.8! and ~2.9! are only asymptotically
valid for large systems~see Secs. III and IV!. Note, that as in
Ref. @19# the Casimir amplitudeDper for purely periodic
boundary conditions is a directly measurable quantity. All
other Casimir amplitudes require the knowledge ofDper.

The accurate measurement of the rhs of Eq.~2.7! requires
special sampling techniques@22,23# which, in part, have al-
ready been implemented in previous investigations of related
problems@18#. However, the necessity of studying large sys-
tems in order to be able to take advantage of Eqs.~2.8! and
~2.9! demands both efficient Monte Carlo algorithms and
data analysis techniques. These techniques are available in
the form of the Wolff algorithm@24# for the Monte Carlo
part and in the form of the optimized multiple histogram
analysis@25# for the data analysis part of this investigation.
The Wolff algorithm is the most efficient way to limit the
growth of the integrated autocorrelation time of the algo-
rithm, which crucially enters the statistical error of all mea-
sured quantities@26#. In our case this is particularly impor-
tant, because our simulation data are taken exclusivelyat the
infinite-lattice critical temperatureTc where critical slowing
down leads to a steep increase of the autocorrelation times of
the local update algorithms like the heat bath or the Metropo-
lis algorithm with the lattice size. The implementation of the
Wolff algorithm for the splitting process described above is
straightforward, because each intermediate HamiltonianHl

@see Eqs.~2.1!, ~2.5!, and ~2.6!# describes aferromagnetic
spin model. According to Eq.~2.7! the quantity to be mea-
sured is the seam energyEseam5Hseam$s% associ-

FIG. 1. Splitting procedure for the lattice. All lattices are closed
periodically along thex direction ~not shown!. ~a! Initial stage~l
50!. The labels a and b indicate that the boundary conditions of

typeha andhb , respectively, are applied across the lattice in they

direction. The Hamiltonian of the system is given by Eq.~2.1! ~d
52! or Eq. ~2.3! ~d53!. ~b! Intermediate stage~0,l,1!. The
dotted lines indicate additional bonds introduced into the system by
the seam HamiltonianHseam. The Hamiltonian of the system is
given by Eq.~2.5!. ~c! Final stage~l51!. The lattice is split into
two decoupled subsystems, one with the old boundary conditionsa
andb, the other with periodic boundary conditions in they direc-
tion indicated by its cylindrical shape.
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ated with the seam Hamiltonian. It is evident from Eq.~2.6!
that the seam energy contains both contributions resembling
the energy density, which contains neighboring spins, and
contributions resembling the spin-spin correlation function,
which contains spins a distanceL/2 apart. In order to deal
with this mixed nature ofEseamwe have employed a hybrid
update scheme which consists of one Metropolis update of
the entire lattice followed by a Wolff update.

The choice of the random number generator is crucial and
depends on the update algorithm@27#. Shift register genera-
tors are given by the recursion relationXn5Xn2p%Xn2q ,
whereX is the computer word with, e.g. 32 bits and% de-
notes the bitwise XOR operation. These generators are fast
and easy to implement, but for smaller lagsp, like in the
R250~p5250,q5103!, they cause large systematic errors if
they are used with the Wolff algorithm@27#. For the hybrid
update scheme used here these systematic deviations are
much smaller and become even unnoticeable, if a shift reg-
ister generator with a larger lag is used@27,28#. We have
therefore chosen the R1279~p51279,q51063! shift register
generator for our simulation. In order to test the R1279 for
our Monte Carlo algorithm we have also implemented the
linear congruential~CONG!, the subtract with carry~SWC!,
and shift register generators with a smaller~R250! and a
larger lag ~R3217! for comparison, wherep53217 and
q52641 in the latter.

In order to obtain an accurate measurement of the rhs. of
Eq. ~2.7! we consider a sequence of HamiltoniansHl for
typically 9–12 values ofl~0<l<1! in d52 and typically 25
values ofl in d53. For each value ofl a histogram of the
seam energyEseamis recorded and written to a file for later
analysis using the optimized multiple histogram analysis de-
scribed in Ref.@25#. The values forl are chosen such that
the histogramsNl~Eseam! of the seam energy for the succes-
sive values ofl have sufficient overlap for the multiple his-
togram method to converge properly~for examples, see Secs.
III and IV!. As a result we obtain the normalization factor
z~l! for each individual histogram, from which therelative
normalization of two histogramsNl1

andNl2
can be inferred

to be @25#

z~l2!/z~l1!5^exp@2~l22l1!Hseam/kBTc#&H .
~2.10!

The rhs of Eq.~2.7!, and therefore the desired Casimir am-
plitudes, follow from Eq.~2.10! for l150 andl251. The
autocorrelation times needed for the analysis are estimated
from the time displaced autocorrelation function
^Eseam(t)Eseam(0)&Hl

as a function of the split parameterl.
The variance of the resulting density of statesW~Eseam! de-
termines the statistical error of the Casimir amplitudes@25#.

The simulations have been performed on a cluster of IBM
RS/6000 workstations and using a hybrid, parallel code on
an IBM SP2 computer at the University of Georgia.

III. CASIMIR AMPLITUDES FOR THE d52
POTTS MODEL

In two dimensions theq-state Potts universality class in-
corporates various critical phenomena, which forq52 ~Ising
universality class!, q53, andq54 are realized by the order-

disorder transitions in adsorbed monolayers@29#. The Ising
model~q52! has been solved rigorously on finite rectangular
lattices with arbitrary aspect ratios in the case of periodic
boundary conditions@30#. For the three-state Potts model,
however, much less rigorous information is available be-
cause exact solutions only exist in the thermodynamic limit
andat criticality @15#. The four-state Potts model is known to
have logarithmic corrections to scaling@31# which also affect
the critical finite-size behavior@32#.

For q52 andq53 the Casimir amplitudesD can be rig-
orously obtained from the conformal field theory@13# which
yields a continuum description and a classification of the
corresponding lattice models through their conformal
anomaly numberc. The criticalq-state Potts model is char-
acterized byc51

2 for q52 and byc5 4
5 for q53 @33#. Due to

its borderline nature the critical four-state Potts model is
characterized byc51 @34# which is also the conformal
anomaly number for the critical one-component Gaussian
model ind52.

The finite-size behavior of the free energy of the critical
q-state Potts model confined to an infinite strip geometry can
only be characterized by the Casimir amplitudes in the con-
tinuum limit. Monte Carlo studies, however, are always re-
stricted to completely finite lattices. Therefore in a first step
a lattice sizeL must be found which is large enough to
enable us to neglect the effects of the finite mesh size of the
lattice on the free energy. Secondly, a lattice sizeM.L must
be found which brings our finite rectangular geometry suffi-
ciently close to the infinite strip limit. In order to accomplish
this we resort to the caseq52 and periodic boundary condi-
tions so that we can take advantage of the exact expression
for the free energy given in Eq.~3.37! of Ref. @30#. We use
this result to evaluate Eq.~2.8! for Da,b5Dper in the con-
tinuum limit M ,L→` at an arbitrarily fixed aspect ratio
s5L/M . This definesDper as a function of the aspect ratios
and we use our Monte Carlo algorithm~described in Sec. II!
to probe this function at fixedL for several values ofM>L,
i.e., for several values ofs<1. The result forL540 and
40<M<320 is displayed in Fig. 2. The solid line shows the

FIG. 2. Casimir amplitudeDper ~periodic boundary conditions!
as a function of the aspect ratios for q52. The solid line shows the
exact result in the continuum limit~see main text! and the symbols
indicate Monte Carlo results for18<s<1. The relative statistical
error is,1.5% for alls. The size of each error bar represents one
standard deviation.
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exact continuum limit obtained from Eq.~3.37! of Ref. @30#
and our Monte Carlo estimates are indicated by the diamond
shaped symbols. After equilibrating the system for 104 hy-
brid Monte Carlo steps~i.e.,.100 autocorrelation times! for
each of the 9,...,12 histograms~see below!, we have used a
total of 7.23105 hybrid Monte Carlo steps per histogram for
measurements for each system size. The excellent agreement
with the exact result for all aspect ratios leads us to the
conclusion thatL540 is sufficient to reach the continuum
limit within our error bars. Furthermore, the aspect ratio
s51/8 is sufficiently close to the infinite strip limits50
within our error bars.

In order to study the decay of finite mesh size effects on
Dper with increasingL, we fix the aspect ratio of our rectan-
gular geometry tos51/8 and estimateDper for a sequence of
lattices with 12<L<40 with periodic boundary conditions
for q52, 3, and 4. We use the same number of histograms
and the same amount of Monte Carlo steps as above, where
the system is always equilibrated for.100 autocorrelation
times for each histogram. The resulting estimates forDper are
displayed in Fig. 3. The horizontal lines indicate the analyti-
cal results forDper from conformal field theory for an infinite
strip. Forq52 ~solid line! andq53 ~dashed line! these are
exact @13#, whereas forq54 ~dash-dotted line! the corre-
sponding amplitudeDper for a one-component critical Gauss-
ian model ind52 @3# is shown. Within the error bars, which
are not displayed in Fig. 3 whenever they are smaller than
the symbol sizes, our estimated values forDper approach the
theoretically expected values monotonically from below asL
increases. These theoretical values lie clearly inside the error
bars of our Monte Carlo estimates ifL>28 for q52 and if
L>24 for q53 and q54. Logarithmic corrections to the
critical finite-size behavior of the free energy forq54 @32#
cannot be detected in our data within the error bars.

From conformal field theory the Casimir amplitudesDper
are given by@35#

Dper52
p

6
c, ~3.1!

wherec is the conformal anomaly number. Taking the aver-
ages of the estimates forDper for L>28 ~q52! and L>24
~q53,4!, respectively, Eq.~3.1! can be used to obtain the
conformal anomaly numberc for the critical q-state Potts
model from our Monte Carlo data. We obtain the following
results:

c50.500960.0020 ~c5 1
2 @33# !, q52,

c50.802360.0048 ~c5 4
5 @33# !, q53,

c51.006060.0074 ~c51@32,34# !, q54, ~3.2!

where the theoretically expected values are shown in paren-
theses for comparison. Equation~3.2! demonstrates that our
Monte Carlo algorithm can be used to obtain the conformal
anomaly number of a critical lattice model from the Casimir
effect for periodic boundary conditions, once the critical
point in question has been identified. The numerical accuracy
of the above Monte Carlo estimates, however, is not as good
as the accuracy of corresponding estimates obtained from
numerical transfer matrix calculations for theq-state Potts
model@35#. The conformal anomaly number can also be de-
termined by analyzing the two-point correlation function of
the energy density. This has been done previously for the
continuous spin Ising model by a Monte Carlo simulation
@36#.

In order to illustrate the way the histogramsNl~Eseam!
have been positioned with respect to the split parameterl,
we show a typical histogram distribution forq54 and peri-
odic boundary conditions in Fig. 4. The system size isM3L
5320340, which is the largest size used in the above stud-
ies. The histogramsNl are normalized to the number of
entries which is the same for each histogram. Note, that the
shapeof Nl changes significantly withl, which increases
from right to left in Fig. 4. According to Eq.~2.6! the range
of seam energiesEseamto be covered increases linearly with

FIG. 3. Casimir amplitudeDper for fixed aspect ratios5
1
8 as

a function of L for q52 ~diamond!, q53 ~circle!, and q54
~square!. The theoretical values are indicated by the solid line~q
52!, the dotted line~q53!, and the dash-dotted line~q54! @see
Eqs.~3.1! and~3.2!#. Error bars are not displayed whenever they are
smaller than the symbol sizes. The size of each error bar represents
one standard deviation.

FIG. 4. HistogramsNl~Eseam! for q54, M3L5320340, and
periodic boundary conditions. The seam energyEseam is given in
units of the coupling constantJ. From right to left Nl is shown for
increasingl. Note the sensitive dependence of theshapeof Nl on
l.
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M so that the number of histograms has to be increased with
growingM in order to maintain sufficient overlap between
neighboring histograms for the multiple histogram method to
converge properly. Insufficient overlap between the histo-
grams results in slow convergence and systematic errors in
the normalization factorsz~l! and, by virtue of Eq.~2.10!, in
the Casimir amplitudes. In fact, for the 320340 lattice the
number of histograms can be reduced from 12~shown in Fig.
4! to 9 without affecting the resulting estimates forDper no-
ticeably within the error bars. The corresponding histogram
distributions forq52 andq53 differ only slightly from the
one shown in Fig. 4 so we do not reproduce them here.

We now turn to another kind of closed boundary condi-
tions, which we will callcyclic in the following discussion.
By cyclic boundary conditions we mean that the spinss(x,1)
ands(x,L) are still treated as nearest neighbors, but this time
s(x,1) is ferromagnetically coupled tos(x,L)1k ~mod q!
rather than tos(x,L) itself, wherek denotes an integer shift
parameter. For aq-state Potts model the shift parameterk
can take the valuesk50,1,...,q21 and the corresponding
Casimir amplitude will be denoted byDcyc,k . Clearly
Dcyc,0[Dper and for (q,k)5~2,1! we have the equivalent of
antiperiodic ~aper! boundary conditions for a spin-12 Ising
model. Forq53 we have the two choicesk51 and k52
apart from periodic boundary conditions. However, these
two choices are rendered equivalent by relabeling the Potts
states according to 1→3,3→2,2→1, and therefore
Dcyc,15Dcyc,2 for q53 @13#. For q54 the choicesk51 and
k53 are equivalent by an analogous argument giving
Dcyc,15Dcyc,3 in this case. Settingk52, however, maps the
four Potts states onto themselves according to 1↔3,2↔4,
which is not equivalent to the former two choices ofk and
therefore the relation ofDcyc,2 to the other amplitudes for
q54 remains to be determined.

Unlike periodic boundary conditions cyclic boundary con-
ditions for k.0 introduce an interiorinterface into the sys-
tem which has a critical finite-size behavior of its own. Al-
though the interfacial tension is a part of the finite-size
contribution to the free energy in a strip or a slab geometry
by definition @see Eq.~1.2!#, the inevitable finiteness of our
lattices introduces finite-size corrections due to finiteM to
the interfacial tension@21# which need to be compensated. It
is for this reason that, by virtue of Eq.~2.8!, only Dcyc,k
12Dper can be measured directly rather thanDcyc,k itself ~see
also Sec. II!.

As in our Monte Carlo studies for periodic boundary con-
ditions ~see Fig. 3! we fix the aspect ratio tos5 1

8 and mea-
sureDcyc,112Dper for a sequence of lattices with 12<L<40
and for q52,3,4 from a multiple histogram analysis of 11
histograms~see below!. The number of Monte Carlo steps
per histogram for equilibration~.100 autocorrelation times!
and measurement remain the same as in the case of periodic
boundary conditions. For eachL we obtain an estimate for
Dcyc,1 from the previously made estimate forDper for the
same value ofL. This allows us to study the decay of finite
mesh size effects of the lattice onDcyc,1 with increasingL.
The result is displayed in Fig. 5. Forq52 andq53 the exact
values ofDcyc,1 @13# in an infinite strip geometry are indi-
cated by the solid and the dashed line, respectively. Within
the error bars, the estimated values approach the exact ones
monotonically from above asL increases. Forq54 and the

Gaussian model, however, the situation is different. The ex-
act resultDcyc,1[Daper5p/12 for a one-component critical
Gaussian model ind52, which is indicated by the dash-
dotted line in Fig. 5, remains far outside the error bars for
any value ofL. Our Monte Carlo data are fully consistent
with the standard finite-size behavior according to Eq.~2.8!
within the error bars, logarithmic corrections to Eq.~2.8!
cannot be identified. For (q,k)5~4,1! the Gaussian model
with antiperiodicboundary conditions does not represent the
critical finite-size behavior of the Potts model.

Averaging the Monte Carlo estimates forDcyc,112Dper for
L>28 and combining them with the corresponding estimates
for Dper we obtain our final estimates forDcyc,1. The results
together with estimates for (q,k)5~3,2! and (q,k)5~4,2! and
~4,3! are summarized in Table I. The exact results forq52
andq53 @13# and the corresponding results for the critical
one-component Gaussian model forq54 are given for com-
parison. The Casimir effect for the four-state Potts model
with cyclic boundary conditions is independent ofk for k>1
within our error bars. The amplitudes given in Table I for
k>1 must be considered aseffectiveamplitudes, because
they are derived from Eq.~2.8!, where logarithmic correc-
tions have been disregarded.

We close this section with a few comments on the histo-
gram distribution for cyclic boundary conditions with respect
to the split parameterl. It has already been pointed out, that
the histograms must be carefully positioned in order to guar-
antee sufficient overlap between neighboring histograms. It
turns out, that this positioning of the histograms is also quite
sensitive to the boundary conditions. An example for (q,k)
5~4,1! is shown in Fig. 6, where the typical histogram dis-
tribution for cyclic boundary conditions andM3L5320340
is displayed. Compared to Fig. 4 the histograms are almost
symmetrically arranged aroundl50.5 and are not as sharply
peaked nearl50.5. Furthermore, the histograms can be
more evenly spaced with respect tol in order to cover the
entire range of seam energies with sufficient overlap be-

FIG. 5. Casimir amplitudeDcyc,1 for the fixed aspect ratios5
1
8 as a function ofL for q52 ~diamond!, q53 ~circle!, andq54
~square!. Theoretical values are indicated by the solid line~q
52,@13#!, the dotted line~q53,@13#!, and the dash-dotted line~q
54, one-component Gaussian model!. Error bars are not displayed
whenever they are smaller than the symbol sizes~representing one
standard deviation!.
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tween subsequent histograms than for periodic boundary
conditions. The number of histograms~11 in Fig. 6! can be
reduced to 9 without changing the final estimates forDcyc,k
noticeably.

The Monte Carlo results presented above are mainly ob-
tained from the R1279 random number generator. For both
the periodic and the cyclic boundary conditions and all val-
ues ofq several series of runs have been repeated using the
CONG, the SWC and the R250 random number generator.
The mutual deviations in the final estimates forD were al-
ways smaller than the statistical error.

IV. CASIMIR AMPLITUDES FOR THE d53
ISING MODEL

In three dimensions the Ising universality class incorpo-
rates critical phenomena in the vicinity of a simple liquid-
vapor critical point and it therefore has the most widespread
realizations of any universality class. With respect to the

Casimir effect in a wetting layer~see Sec. I! it is the relevant
universality class for a film of a binary liquid mixture near
the critical end point of the demixing transitions@11,12#,
where surface fields have to be included. Unlike its two-
dimensional counterpart the nearest neighbor spin-1

2 Ising
model ind53 @see Eq.~2.3!# is still lacking a rigorous treat-
ment. Therefore the Casimir amplitudesD can also only be
estimated with uncertain numerical accuracy@9,14#. Accord-
ing to the results presented in the previous section, however,
the prospects for the Monte Carlo algorithm presented here
to substantially improve the currently known estimates forD
in d53 seem to be very good.

A lattice resembling an infinite slab ind53 contains typi-
cally 100 times more lattice sites than its counterparts in
d52. In order to cope with the corresponding increase in
demand for computational resources we have parallelized
our hybrid algorithm in a way suitable for an IBM SP2 uti-
lizing its high bandwidth, low latency switches for commu-
nication. The parallization scheme@37# uses four processors
one of which equilibrates the system and generates a se-
quence of equilibrium spin configurations using the Wolff
algorithm. The remaining three processors perform Metropo-
lis updates of a previously generated configuration in order
to set up histograms of the seam energyEseamand measure
other quantities like the energy density, the specific heat, the
magnetization, and the magnetic susceptibility for control
purposes. Configurations are provided by the Wolff process
and sent to the Metropolis processes whenever one is ready
to receive a new configuration. The idle time of the proces-
sors is minimized by adjusting the number of Wolff and
Metropolis updates performed in the interval between the
broadcasts of the new configurations. Typically, the Wolff
process sends a new configuration every four updates and a
Metropolis process performs seven updates for measure-
ments, which yields a parallel efficiency between 75% and
85% depending on the system size.

Following the procedure described in the previous section
for d52, we probe the Casimir amplitudeDper for the peri-
odic boundary conditions using Eq.~2.9! as a function of the
aspect ratios[L/M<1 and varyingL between 12 and 24.

TABLE I. Casimir amplitudesD for the critical q-state Potts model confined to a strip ind52 with
periodic and cyclic boundary conditions~see main text!. Forq52 andq53 the exact results@13# are shown
for comparison in parenthesis. Forq54 the corresponding amplitudes for a critical Gaussian model are
displayed.

q Dper Dcyc,1 Dcyc,2 Dcyc,3

2 20.262360.0010 0.524260.0039

S2 p

12
.20.2618D a S p

6
.0.5236D a

3 20.420160.0025 0.425760.0103 0.424860.0101

S 2
2p

15
.20.4189D a S 2p

15
.0.4189D a S 2p

15
.0.4189D a

4 20.526860.0039 0.343260.0136 0.350160.0136 0.342560.0136

S 2
p

6
.20.5236D b S p

12
.0.2618D b S p

12
.0.2618D b S p

12
.0.2618D b

aRef. @13#.
bGaussian model.

FIG. 6. HistogramsNl~Eseam! for (q,k)5~4,1! andM3L5320
340. The seam energyEseamis given in units of the coupling con-
stantJ. From right to left Nl is shown for increasingl. Note the
difference in the dependence of theshapeof Nl on l as compared
to the periodic boundary conditions~see Fig. 4!.
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After equilibrating the system for 103 Wolff updates~typi-
cally .10 autocorrelation times!, we have used a total of
1.13105 Wolff updates per histogram for the measurements
for each system size. In order to guarantee sufficient overlap
between subsequent histograms even for the largest lattices
used in this investigation, we have used 25 histograms of
Eseam for all system sizes in the final multiple histogram
analysis. As an example we show the results for 16<L<24
and 1/6<s<1 in Fig. 7. In comparison withd52 ~see Fig.
2!, Dper does not vary as much with the aspect ratios and,
within the error bars, the infinite slab limits50 is already
reached fors51/6. Furthermore, Fig. 7 shows that the esti-
mates forDper as functions ofs have already become inde-
pendent ofL for L>20. ForL516 there are still traces of
small systematic deviations due to finite mesh size effects
present in our data. The increase in the error bars for increas-
ing L is due to increasing autocorrelation times and decreas-
ing overlap between neighboring histograms. Furthermore,
the error bars show the tendency to increase withs ~to the
right in Fig. 7!, because the histograms contain fewer entries
for smaller values ofM . The relative statistical errors are
between two and four times as large as ind52 which is due
to both larger autocorrelation times and poorer statistics in
d53. Averaging the values ofDper from our Monte Carlo
data obtained forL520 and L524 for the aspect ratios
s51/4 ands51/6, we obtain our final estimate

Dper520.152660.0016 ~4.1!

for the critical Ising model ind53. For comparison one ob-
tainsDper.20.11 from ane expansion~e542d! up to first
order in e @9#. Combining a partial resummation of thee
expansion with an interpolation scheme using the exact re-
sult Dper52p/12 for the Ising ~two-state Potts! model in
d52 one obtains the following approximate interpolation
formula for Dper as a function of the spatial dimensiond
within the Ising universality class@9#

Dper52p2d/2GS d2D z~d!S 12
5

4

42d

72dD . ~4.2!

Note that Eq.~4.2! reproduces both thee expansion to the
first order ford542e and the exact result ford52. Ford53
Eq. ~4.2! yields the estimateDper.20.13, which improves
the puree-expansion result, but still remains far outside the
statistical error of our Monte Carlo estimate given by Eq.
~4.1!.

Finally, we have studied the decay of the finite mesh size
effects on our estimates forDper with increasingL for a se-
quence of lattices with 12<L<20 at a fixed aspect ratios5
1
6 of our slab geometry. The Casimir amplitudeDper accord-
ing to Eq. ~2.9! as a function ofL is shown in Fig. 8, the
solid line indicates our estimate forDper according to Eq.
~4.1!. As for d52 ~see Fig. 3! the estimates forDper approach
the solid line monotonically from below asL increases, but
effects of the finite mesh size of the lattice decay consider-
ably faster. ForL516 these effects are already smaller than
the statistical error.

We close our presentation with a few comments on the
typical histogram distribution ind53, which we do not re-
produce here. In contrast to the two-dimensional case shown
in Fig. 4 the histogramsNl can be almost evenly spaced with
respect tol. Furthermore, the shape ofNl varies much less
with l than ind52, which simplifies the positioning of the
histograms considerably. In order to guarantee sufficient
overlap between neighbor histograms, roughly twice as
many histograms as for the corresponding two-dimensional
case are required, although the range of seam energies has
increased by more than an order of magnitude. Maintaining
sufficient overlap, however, has become much more de-
manding, because the range of seam energiesEseam to be
covered grows asM2 in d53.

V. SUMMARY AND OUTLOOK

From the basic mechanism underlying the well-known
Casimir effect in electromagnetism it is clear that critical
fluctuations in a confined system lead to a critical finite-size

FIG. 7. Casimir amplitudeDper ~periodic boundary conditions!
for the Ising universality class ind53 as function of the aspect ratio
s for L516 ~diamond!, L520 ~circle!, and L524 ~square!. The
Monte Carlo results for16<s<1 are displayed. The relative statisti-
cal error is,4% for all s. The error bars forL516 have been
moved to the left and those forL524 have been moved to the right
for clearity. The size of each error bar represents one standard de-
viation.

FIG. 8. Casimir amplitudeDper for the fixed aspect ratios5
1
6 as

a function ofL for the critical Ising model. The solid line indicates
our final Monte Carlo estimate forDper @see Eq.~4.1!#. The size of
each error bar represents one standard deviation.
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contribution to its free energy, which is the direct analogue
of the Casimir effect given by Eq.~1.1!. At the critical point
of the system this finite-size contribution to the free energy
can be characterized by theuniversalCasimir amplitudesD
@see Eqs.~1.2! and ~1.4!#, which in d53 dimensions are
experimentally accessible by, e.g., a wetting experiment@9#.
We have presented a Monte Carlo algorithm which is ca-
pable of probing these Casimir amplitudes for a critical sys-
tem confined to a strip~d52! or slab~d53! geometry with
considerable accuracy. The statistical errors are small enough
to probe the dependence of our estimates forD on the aspect
ratio s of the lattice and the numberL of lattice rows or
lattice planes ind52 or d53, respectively.

In d52 our Monte Carlo estimates of the Casimir ampli-
tudes for the criticalq-state Potts model confined to a slab
geometry with periodic and cyclic boundary conditions agree
very well with exact results forq52 andq53. Forq54 and
periodic boundary conditionsDper agrees very well with the
corresponding value for the critical one-component Gaussian
model, as expected from conformal field theory~see Eq.
~3.2! and Ref.@34#!. For q54 and cyclic boundary condi-
tions we have extracted aneffective Casimir amplitude
Dcyc,15Dcyc,2 5Dcyc,3 from Eq. ~2.8!, which does not match
Daper[Dcyc,1 for the critical one-component Gaussian model
confined to a strip with antiperiodic boundary conditions.
Logarithmic corrections to the critical finite-size behavior of
the free energy, which would also appear in Eq.~2.8!, remain
unresolvable within our error bars.

For other boundary conditions such as the application of
surface fields, which generatesurfacecontributions to the
free energy, the criticalq-state Potts model confined to a
strip geometry also provides the natural testing ground for
our algorithm. The presence of these surfaces, however, en-
hances effects of the finite mesh size of the lattice on the free
energy substantially, so that with the present version of our

algorithm larger lattice sizes must be considered. In order to
avoid larger lattices, the accordingly increased autocorrela-
tion times, and the resulting additional demand for computa-
tional resources the algorithm must be modified to include,
e.g., anisotropic coupling constants. Further studies with this
modified version of our algorithm are currently under way.

In d53 we have investigated a critical Ising model con-
fined to a slab geometry with periodic boundary conditions
for which no exact results are known. In order to deal with
the drastically enhanced demand for computational resources
in this case we have parallelized our algorithm in a way
suitable for an IBM SP2 utilizing four processors in parallel.
We have found thatDper varies only half as much with the
aspect ratio than it does ind52 and that the infinite slab
limit is already reached fors51/6. Furthermore, effects of
the finite mesh size of the lattice decay faster than ind52 so
that the overall lattice sizes could be kept moderately small
in our simulation. Existing field-theoretic estimates for the
Casimir amplitudeDper for the Ising universality class in
d53 remain far outside the statistical error of our final
Monte Carlo estimate@see Eq.~4.1!#.

As far as other boundary conditions, especially those
characterized by magnetized surfaces, are concerned, the
situation is similar to the two-dimensional case. The pres-
ence of the surfaces requires an appropriate customization
and further testing of the algorithm, which is currently under
way.
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