PHYSICAL REVIEW E VOLUME 53, NUMBER 5 MAY 1996

Casimir effect in critical systems: A Monte Carlo simulation

M. Krech and D. P. Landau
Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602
(Received 22 September 1995

If a critical system is confined to a finite geometry, critical fluctuations of the order parameter generate
long-ranged forces between the system boundaries. These forces, commonly known as Casimir forces, are
characterized by universal amplitudes and scaling functions. A hybrid Monte Carlo algorithm has been devised
and used to measure the Casimir amplitudes directly and accurately. We apply the algorithm to a critical
g-state Potts model confined to a rectanglex L geometry ind=2 dimensions and to a critical Ising model
confined to aM?x L geometry ind=3 dimensions. We find good agreement with rigorous results=i& and
compare our results with field-theoretic estimates of the Casimir amplitude=#

PACS numbg(s): 64.60.Fr, 05.70.Jk, 68.35.Rh

I. INTRODUCTION the wetting layer is determined by the minimum of the so-
called effective interface potenti&) as function of apre-
One of the most fundamental discoveries in the theory ofcribedthicknesd [7]

electromagnetism dates back to the year 1948, when the Q)

Dutch physicist H. B. G. Casimir realized that two metallic (T,

plates placed parallel to one another at a distabcen /PLTL A = @(D=1p(M)py(T) = 1]po(T) 8P+ oi(T)

vacuum experience an attractive fofdd. According to the

modern view of this effect, which had also been proposed by +0,(T) + So(T,1), (1.2

Casimir, the metallic plates impose boundary conditions on

the zero-point fluctuations of the electromagnetic field whereA is the interfacial aregp(T) andp,(T) denote the

thereby imposing aih. dependence on the fluctuation spec-liquid and the vapor density, respectivepy(T) is the vapor

trum. This in turn gives rise to ah dependence in the total pressureat liquid-vapor coexistence, angp is a dimension-

energy Eof the configuration. Likewisghermalfluctuations less measure of the undersaturation of the vapor. The

of the electromagnetic field at high temperatures introduce gubstrate-liquid and liquid-vapor interfacial tensiong(T)

similar L dependence to the configuration enefgy. Spe- and o,(T) do not depend o, and dw(T,l) contains the

cifically, in the limit of large cross-section aredsof the  contribution of the van der Waals forces which has the as-

plates one obtainfl,2] ymptotic form[8]
i E w? he -0 5 e WI™2+ (173 (nonretardeyl 13
AT T 7208 T Qoad)=\W 13120174 (retardeq, &9
E £(3) keT e where the weak temperature dependence of the Hamaker
im —=— 22 iz , kgT>— (1.1  constantsV¥ andW, has been disregarded. Note, that accord-
A A 87 L L ing to Eq. (1.2 with Sw(l)=dw,qnw(l) one obtains

Loc(Sp) Y2 for the equilibrium thickness. for the nonre-
where{(3)=1.202 is a special value of the Riemafifunc-  tarded van der Waals forces. This power law crosses over to
tion. Note, that the dimensionless amplitudes in EQl) Loc(8p) Y for Sp—0 because the van der Waals forces
are iven by the corresponding amplitudeA  become retarded dsincreases.

=—2"97792NI'(d/2)¢(d) of a massless(i.e., critica) According to the mechanism underlying the Casimir ef-
Gaussian field theor}yB,4] for N=2 components ill=4 and  fect in electromagnetism, critical fluctuations of the order
d=3 dimensions, respectively. parameter at a critical point of a wetting agent generate an

Several years after Casimir's discovery a general theorpdditional long-ranged force which contributeséo(l) [see
of these so-called dispersion forces in layered dielectrics wakq. (1.2)]. One finds[9]
formulated [5] yielding a unified picture of the Casimir
forces and the well known van der Waals for¢€% It was Sw(Tg,1)= 6w gw(l) +kgT Al (A7) (1.4
already noted in Ref5] that the dispersion forces play an
important role in the vast realm of the wetting phenomenan d dimensions, whera is theuniversalCasimir amplitude,
[7]. In the simplest case a wetting transition leads to theand T is the critical temperature. Therefore one expects a
formation of a macroscopically thick liquid layer on the sur- critical effect on the equilibrium layer thickness e.g., in
face of a homogeneous plane substrate which is exposed tbe vicinity of the\ transition in“*He [10] and near critical
the vapor of the wetting agent. The combined substratepoints of the demixing transition in the binary mixtures
liguid-vapor system then has the structure of the layered dit11,12. The Casimir amplitude\ in Eq. (1.4) is exactly
electrics considered in Rdf5]. The equilibrium thickness of known for the critical Ising and three-state Potts models in
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d=2 dimensiong 13]. However, ind=3, which is the ex-
perimentally relevant casd, can only be estimatef®,14]. Hot==32 a(na(r'), 2.3

We have devised a hybrid Monte Carlo algorithm which (rr’)
allows us to measure the Casimir amplitutieof a critical
lattice modeldirectly with considerable accuracy. The avail- wherer=(x,y,z), r'=(x",y’,z') denote the lattice sites and
ability of rigorous results foA for the criticalg-state Potts  o(r)==1 for convenience. The geometry of the lattice un-
model ind=2 for q=2 andq=3 for all possible boundary derlying Eq. (2.3 is a slab containing?X L lattice sites
conditions[13] provides the testing ground for the Monte and M=L. Along the x andy direction we always apply
Carlo algorithm presented here. For this purpose we restrigieriodic boundary conditions in the same sense as described
ourselves to the case of cyclic, i.e., closed boundary condiabove. The boundary conditions along thelirection vary
tions, for which the free energy does not contain surfaceaccording to the situation to be studied. The position of the
contributions[see Eq(1.2)]. The presence of surface contri- critical point of the model defined by E¢R.3) on an infinite
butions to the free energy especially in the case of appliedimple cubic lattice has been conjectured to be giveflly
surface fields requires additional customization of the algo-
rithm which will not be discussed here.

The remainder of this paper is organized as follows. In tanhK.=(\56— Z)COSZ, (2.4)
Sec. Il we present the lattice models we use for the simula- 8
tion and give a detailed account of the Monte Carlo algo-

rithm. Section Il is devoted to the application of the algo-\yhereK  is defined as in Eq2.2). The critical temperature
rithm to the criticalg-state Potts.model fag=2, 3 aljd 4in according to Eq(2.4) is given byK,=0.221 658 6... which
a rectangular geometry for various aspect ratios#2. In - 4grees to within five to six digits with the estimates fog

Sec. IV we present the first results for the critical Ising modek,om the series expansions and recent Monte Carlo simula-
confined to a slab geometry oh=3. Finally we summarize jons [17].

our results in Sec. V. There have been several previous attempts to access the
critical finite-size amplitudes by Monte Carlo simulations
IIl. LATTICE MODELS AND MONTE CARLO METHOD [18,19 (see Ref[20] for a detailed review In the most

recent ond19] the critical finite-size amplitude of the free
For our investigation of the Casimir effect in two- energy of an Ising model has been related to the order pa-
dimensional critical systems belonging to thestate Potts rameter distribution function, which can be probed directly
universality class we consider the ferromagngtistate Potts  py Monte Carlo simulations. In Ref19] a cubic geometry,
model with nearest neighbor interactions on a square latticBe., M=L with purely periodic boundary conditions has
without external fields. Using the standard Kronec&eep-  peen used. In order to investigate the rectangular or the slab
resentation for the interaction between neighboring Pottgeometry on which we will focus here, we have basically
spinsof(r) anda(r') we may write the model Hamiltonian as followed the approach outlined in RefL8], where the ge-
ometry itself is changed as a function of a paramaten
order to probe the corresponding change of the free energy
A op=-1J 2 So(r),0(r') (2.1) directly. In the case of the critical Potts model in the rectan-
) gular geometry ird=2 and even values df this is accom-
lished by introducing a seam Hamiltoniai#., 40} be-
where r=(x,y), r’'=(x',y’) denote lattice sites and 'E\)/veen theytwo FOWS 0% spins at=1L andy=%slf%£{1}such

o(r)e{1,2,...q}. The coupling constant is positive and the  {hat the combinedHamiltonian .7{o}+ 7 ..io} describes
angular bracketsr.r’) denote a nearest neighbor pair. The,q uncoupled Potts models, each on a square lattice with

geometry of the lattice underlying ER.1) is chosen to be  \y5 1| sjtes. One of these subsystems is endowed with pe-
rectangular withM XL lattice sites andM=L. Along thex  yiqqic houndary conditions along thedirection whereas the
direction we always apply periodic boundary conditions, i.€..,ther inherits the boundary conditions of the initial system

the spinso(M,y) ando(ly) are treated as nearest neighbor jegerined by Eq(2.1). The interpolating Hamiltonian
pairs with the interaction strength Along they direction

the boundary conditions are varied according to the case un-
der consideration. The critical point of the ferromagnetic Ih\ot =T o} + N searl 0}, (2.5
g-state Potts model on an infinite square lattice is located at
its self-dual point, which for the model defined by Eg.1)

o for O<A<1 then describes all the intermediate stages in the
is given by[15]

process of splitting the system into two decoupled sub-
K 5 systems. This procedure is graphically displayed in Fig. 1
(e%c—1)°=q, (2.2 showing the initial lattice model described by{o}=.7{c}
[see Egs(2.1) and(2.5)], an intermediate stage described by
whereK .= J/(kgT.) andT. denotes the critical temperature. .7,{c} according to Eq(2.5) for 0<A<1 with additional far
In the three-dimensional case we consider the ferromagreaching bonds, and the final stage described by(ZEB). for
netic spins Ising model on a simple cubic lattice with near- A=1. The explicit construction of the seam Hamiltonian
est neighbor interaction, which is the standard representativéZs,40} is very simple, so that we only quote its form for
of the Ising universality class. In the absence of externathe case of periodic boundary conditions along yhéirec-
fields we use the Hamiltonian in the form tion. It reads
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identical bulk and surface contributions which therefore can-
cel each other in E2.7). Moreover, corrections to the criti-
cal surface or interfacial tensions duefimite M [21] cancel

as well, provided effects due to the finite mesh size of the
lattice can be neglected. By evaluating the right-hand side
(rhg) of Eq. (2.7) for sufficiently large lattices we thus probe
the critical finite-size part of the free energirectly. Note,
that due to the short-ranged nature of the interaction in the
Potts model and in the Ising model according to E@sl)

and (2.3 the van der Waals contribution to E(L.4) is re-
placed by a contribution containingxponentially small
terms.

If A,, denotes the Casimir amplitude for boundary con-
ditions of typea andb imposed on the two boundaries of the
system, respectively, the left-hand sigles) of Eq. (2.7) can
be directly related td\, ,, and the Casimir amplitud&,,, for

Vet a periodic boundary conditions. Using the standard decompo-
@ A= =N sition of the free energy in a slab geometsge Eq(1.2) and
ﬁ&W Ref.[9]) we have for sufficiently largé,L and in the limit

i e of vanishing aspect ratie

AT+ K soany = T =KeTe(Dap+ 28 pe)M/L

(2.9
ind=2 and
FIG. 1. Splitting procedure for the lattice. All lattices are closed
periodically along thex direction (not shown. (a) Initial stage(\ TAI A T soans — T{9 =KgT(3A, b+4Aper)M2/L2
=0). The labels a and b indicate that the boundary conditions of ' (2.9

type [@and [bl, respectively, are applied across the lattice inythe ) _ _

direction. The Hamiltonian of the system is given by E2.) (d  in d=3. By comparing Eqg2.8) and(2.9) with Eq.(2.7) we
=2) or Eq. (2.3 (d=3). (b) Intermediate stag€0<\<1). The find the Casimir amplitudes are given by the thermodynami-
dotted lines indicate additional bonds introduced into the system bgal average on the rhs of E(.7), which is directly acces-
the seam HamiltonianZge,,, The Hamiltonian of the system is Sible in a Monte Carlo simulation. However, one must keep
given by Eq.(2.5. (c) Final stage(A=1). The lattice is split into  in mind, that Eqs.(2.8) and (2.9) are only asymptotically
two decoupled subsystems, one with the old boundary conditions valid for large systemésee Secs. Ill and I\ Note, that as in
andb, the other with periodic boundary conditions in thedirec- ~ Ref. [19] the Casimir amplituded,, for purely periodic
tion indicated by its cylindrical shape. boundary conditions is a directly measurable quantity. All

M other Casimir amplitudes require the knowledgeAgy,.

; _ The accurate measurement of the rhs of q?) requires
=—7/sean{0'}_\lle [ So(x,L12),o(x.Li2+ 1)t So(x,1),0(xL) special sampling techniqu§®2,23 which, in part, have al-
ready been implemented in previous investigations of related
= Oo(x 1,006,112~ OaixLi2+1),0x1)]- (2.6 problems 18]. However, the necessity of studying large sys-

. . . . tems in order to be able to take advantage of EB®) and

For_ the_ Ising model id=3 t_he correspondmg_seam Hamil- (2.9 demands both efficient Monte Carlo algorithms and
tonian is the nat_ural thr_ee dimensional extension Of(E@’_ data analysis techniques. These techniques are available in
where only the interactions have to be replaced according 9 e form of the Wolff algorithm[24] for the Monte Carlo
Eq.(2.3. part and in the form of the optimized multiple histogram

Th; cthatr;]ge irr: the fr.eetrtlanerw attT :xTC 1 which CO:;F:‘[- analysis[25] for the data analysis part of this investigation.
Sponas 1o the change In the geometry A6t L Compared 10 - g \yofff algorithm is the most efficient way to limit the

)\zoh(se_e F'?t' 3‘ fo_llowsbdlrectly from elementary statistical growth of the integrated autocorrelation time of the algo-
mechanics. 1t 1S given by rithm, which crucially enters the statistical error of all mea-

TIH+ T — AW sured quantitie§26]. In our case this is particularly impor-
{ seant ~ 717} tant, because our simulation data are taken exclusatelye
= —KgT¢ IN(eXP( — Hsean!KeTe)) 7 (2.7  infinite-lattice critical temperatur_ where critical slowing

down leads to a steep increase of the autocorrelation times of
where(:--) 5, denotes the thermal average with respect to théhe local update algorithms like the heat bath or the Metropo-
Hamiltonian.7Z of the initial Potts model. In the limit of the lis algorithm with the lattice size. The implementation of the
vanishing aspect ratis=M/L either of the free energieg  Wolff algorithm for the splitting process described above is
in Eq. (2.7) can be written in the form of Eq1.2) with 0  straightforward, because each intermediate Hamiltorign
replaced by7 andA replaced byM in d=2 and byM? in [see Egs(2.1), (2.5, and (2.6)] describes derromagnetic
d=3. According to the choice of the boundary conditions forspin model. According to Eq2.7) the quantity to be mea-
the split systen{see Fig. 1.7{.%} and. {7+ H# yeant have  sured is the seam energ¥Eq e = #seal0} associ-
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ated with the seam Hamiltonian. It is evident from E2.6) .0.235 .
that the seam energy contains both contributions resembling exact —
the energy density, which contains neighboring spins, and -0.240 ¢
contributions resembling the spin-spin correlation function,
which contains spins a distant€2 apart. In order to deal 0245t
with this mixed nature oEg.,,,we have employed a hybrid 0250 |
update scheme which consists of one Metropolis update of
the entire lattice followed by a Wolff update. P 0.255
The choice of the random number generator is crucial and
depends on the update algorith@v]. Shift register genera- -0.260
tors are given by the recursion relatio,=X,_,&X,_q, 02651
whereX is the computer word with, e.g. 32 bits amdde- ’
notes the bitwise XOR operation. These generators are fast 0.270 . . . . .
and easy to implement, but for smaller lagslike in the 0 0.2 04 06 08 1
R250(p=250,0=103), they cause large systematic errors if
they are used with the Wolff algorithi27]. For the hybrid FIG. 2. Casimir amplitude\,, (periodic boundary conditiofs

update scheme used here these systematic deviations g{€, function of the aspect ratifor q=2. The solid line shows the
much smaller and become even unnoticeable, if a shift regaxact result in the continuum limisee main tejtand the symbols
ister generator with a larger lag is usg2l7,28. We have indicate Monte Carlo results fof<s<1. The relative statistical
therefore chosen the R1278=1279,q=1063 shift register  error is<1.5% for alls. The size of each error bar represents one
generator for our simulation. In order to test the R1279 forstandard deviation.

our Monte Carlo algorithm we have also implemented the

linear congruentia( CONG), the subtract with carrySWO),  jisorer transitions in adsorbed monolayi28]. The Ising
and shift register generators with a small&250 and a  ,,4e|(q=2) has been solved rigorously on finite rectangular
larger lag (R3217 for comparison, wherep=3217 and |54ices with arbitrary aspect ratios in the case of periodic

q=264%jin the Lattgr. fthe th qFioundary conditiong30]. For the three-state Potts model,
In order to obtain an accurate measurement of the rhs. owever, much less rigorous information is available be-

Eq. (2.7) we consider a sequence of Hamiltoniars, for  .5,se exact solutions only exist in the thermodynamic limit

typically 9-12 values ok(0=<A<1) in d=2 and typically 25 5,4t criticality [15]. The four-state Potts model is known to

values of\ in d=3. For each value ok a histogram of the 5. |agarithmic corrections to scalifigl] which also affect
seam energ¥qeqnis recorded and written to a file for later o critical finite-size behavidiz2].

analysis using the optimized multiple histogram analysis de-
scribed in Ref[25]. The values for\ are chosen such that
the histogram®, (E.,) Of the seam energy for the succes-
sive values of\ have sufficient overlap for the multiple his-
togram method to converge prope(fgr examples, see Secs.
[l and IV). As a result we obtain the normalization factor
z(\) for each individual histogram, from which threlative

normalization of two histogramid, andN,, can be inferred

For g=2 andgq=3 the Casimir amplitudeA can be rig-
orously obtained from the conformal field thedd8] which
yields a continuum description and a classification of the
corresponding lattice models through their conformal
anomaly numbec. The criticalg-state Potts model is char-
acterized byc=3 for =2 and byc=3 for q=3[33]. Due to

its borderline nature the critical four-state Potts model is
characterized byc=1 [34] which is also the conformal

to be[25] anomaly number for the critical one-component Gaussian
model ind=2.
Z(?\z)/Z(M)=<eXF[—(?\2—M)-Wfsean/kBTc])J/-(z 10 The finite-size behavior of the free energy of the critical

g-state Potts model confined to an infinite strip geometry can
only be characterized by the Casimir amplitudes in the con-
The rhs of Eq.(2.7), and therefore the desired Casimir am- tinuum limit. Monte Carlo studies, however, are always re-
plitudes, follow from Eq.(2.10 for A;=0 andA,=1. The  stricted to completely finite lattices. Therefore in a first step
autocorrelation times needed for the analysis are estimates |attice sizeL must be found which is large enough to
from the time displaced autocorrelation function enable us to neglect the effects of the finite mesh size of the
(Eseant) Esean0)) , as a function of the split parameter  |attice on the free energy. Secondly, a lattice $ite L must
The variance of the resulting density of staW¢E..,,) de- be found which brings our finite rectangular geometry suffi-
termines the statistical error of the Casimir amplitufs). ciently close to the infinite strip limit. In order to accomplish
The simulations have been performed on a cluster of IBMhis we resort to the case=2 and periodic boundary condi-
RS/6000 workstations and using a hybrid, parallel code oftions so that we can take advantage of the exact expression
an IBM SP2 computer at the University of Georgia. for the free energy given in E¢3.37) of Ref.[30]. We use
this result to evaluate Eq2.8) for A, ,=Ap, in the con-
tinuum limit M,L— at an arbitrarily fixed aspect ratio
s=L/M. This defines\,, as a function of the aspect ratio
and we use our Monte Carlo algorithescribed in Sec. )i
In two dimensions the-state Potts universality class in- to probe this function at fixetl for several values oM=L,
corporates various critical phenomena, whichder2 (Ising  i.e., for several values of<1. The result forL=40 and
universality clasg q=3, andg=4 are realized by the order- 40<M =320 is displayed in Fig. 2. The solid line shows the

Ill. CASIMIR AMPLITUDES FOR THE d=2
POTTS MODEL
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FIG. 4. HistogramsN, (Egean) for q=4, M XL =320x40, and
periodic boundary conditions. The seam eneky,,is given in
units of the coupling constadt Fromright to left N, is shown for
increasing\. Note the sensitive dependence of gfmpeof N, on

FIG. 3. Casimir amplitudé,, for fixed aspect ratis=1 as
a function of L for gq=2 (diamond, q=3 (circle), and q=4
(square. The theoretical values are indicated by the solid lige
=2), the dotted line(q=3), and the dash-dotted lin@=4) [see
Egs.(3.1) and(3.2)]. Error bars are not displayed whenever they are
smaller than the symbol sizes. The size of each error bar represents

one standard deviation. ™

Aper: - g C, (3.1)
exact continuum limit obtained from E¢8.37 of Ref.[30] | herec is the conformal anomaly number. Taking the aver-
and our Monte Carlo estimates are indicated by the dlamong{ges of the estimates fa., for L=28 (q=2) and L =24
shaped symbols. After equilibrating the system fof B9~ (q_3 4 respectively, Eq(3.1) can be used to obtain the

each of the 9,...,12 histogranisee below, we have used a model from our Monte Carlo data. We obtain the following
total of 7.2x10° hybrid Monte Carlo steps per histogram for resylts:

measurements for each system size. The excellent agreement

with the exact result for all aspect ratios leads us to the c=0.5009-0.0020 (c=3[33]), q=2,
conclusion that. =40 is sufficient to reach the continuum

limit within our error bars. Furthermore, the aspect ratio c=0.8023-0.0048 (c=%[33]), q=3,

s=1/8 is sufficiently close to the infinite strip limig=0

within our error bars. c=1.0060-0.0074 (c=1[32,34), q=4, 3.2

In order to study the decay of finite mesh size effects on h he th icall d val h .
Ay With increasingL, we fix the aspect ratio of our rectan- where the theoretically expected values are shown in paren-

Gl geometry 15118 and esimats o & sequence of 112565 [ comparion, Equal®a demonstates al o
lattices with 12<L. <40 with periodic boundary conditions 9

for =2 3. and 4. We use the same number of histo ramanomaly number of a critical lattice model from the Casimir
q=2 o, ) 9raMtract for periodic boundary conditions, once the critical

and the same amount of M_onte Carlo steps as above., Whef)%int in question has been identified. The numerical accuracy

the system is always equilibrated forl00 autocorrelation o the apove Monte Carlo estimates, however, is not as good

times for each histogram. The resulting estimatesfrare 45 the accuracy of corresponding estimates obtained from

displayed in Fig. 3. The horizontal lines indicate the analyti-nymerical transfer matrix calculations for tiestate Potts

cal results forA,, from conformal field theory for an infinite model[35]. The conformal anomaly number can also be de-

strip. Forq=2 (solid line) andq=3 (dashed lingthese are termined by analyzing the two-point correlation function of

exact[13], whereas forq=4 (dash-dotted linethe corre-  the energy density. This has been done previously for the

sponding amplitud@,, for a one-component critical Gauss- continuous spin Ising model by a Monte Carlo simulation

ian model ind=2 [3] is shown. Within the error bars, which [36].

are not displayed in Fig. 3 whenever they are smaller than In order to illustrate the way the histogram¥ (Esean)

the symbol sizes, our estimated values &g, approach the have been positioned with respect to the split parameter

theoretically expected values monotonically from belovLas we show a typical histogram distribution fq=4 and peri-

increases. These theoretical values lie clearly inside the erradic boundary conditions in Fig. 4. The system siz#lix L

bars of our Monte Carlo estimatesliE=28 for q=2 and if = =320x40, which is the largest size used in the above stud-

L=24 for g=3 and q=4. Logarithmic corrections to the ies. The histogram®, are normalized to the number of

critical finite-size behavior of the free energy fge=4 [32]  entries which is the same for each histogram. Note, that the

cannot be detected in our data within the error bars. shapeof N, changes significantly withx, which increases
From conformal field theory the Casimir amplitudgs,,  from right to leftin Fig. 4. According to Eq(2.6) the range

are given by 35] of seam energieB.,,t0 be covered increases linearly with
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M so that the number of histograms has to be increased with 0.55 ' . ' '

growing M in order to maintain sufficient overlap between © o & & .z X

neighboring histograms for the multiple histogram method to osol a=z—— A

converge properly. Insufficient overlap between the histo- g:i o

grams results in slow convergence and systematic errors in 04s | §

the normalization factorg(\) and, by virtue of Eq(2.10,in | = ° ‘{’ ‘[’%{5% __________ % _____________

the Casimir amplitudes. In fact, for the 32@0 lattice the A 040} I\

number of histograms can be reduced fron(dt®wn in Fig. i g oxect

4) to 9 without affecting the resulting estimates fiyy, no- 0.35 {J ‘l’ :l: + +

ticeably within the error bars. The corresponding histogram +

distributions forq=2 andq=3 differ only slightly from the 0.30 | . ]

one shown in Fig. 4 so we do not reproduce them here. ('Gauss'a“ model
We now turn to another kind of closed boundary condi- 0.25

30 35 40 45
L

tions, which we will callcyclic in the following discussion. 50

By cyclic boundary conditions we mean that the s 1)
ands(x,L) are still treated as nearest neighbors, but this time
s(x,1) is ferromagnetically coupled ts(x,L)+k (mod q)
rather than tes(x,L) itself, wherek denotes an integer shift
parameter. For @-state Potts model the shift parameker
can take the valuek=0,1,...g—1 and the corresponding
Casimir amplitude will be denoted by .. Clearly
Acye.=Aper and for @,k)=(2,1) we have the equivalent of
antiperiodic (ape) boundary conditions for a spih-sing
model. Forq=3 we have the two choicek=1 and k=2 ) ) o
apart from periodic boundary conditions. However, thesd>aussian model, however, the situation is different. The ex-
two choices are rendered equivalent by relabeling the Pot@Ct resultAcyc =Aqne=7/12 for a one-component critical
states according to _]23'3_)2,2_,1' and therefore Gaussian model |rd:2, which is indicated by the dash-
Acyes=Acye 2 for q=3 [13]. For q=4 the choicesk=1 and dotted line in Fig. 5, remains far outside the error bars for
k=3 are equivalent by an analogous argument givinggny value ofL. Our Monte Carlo data are fully consistent
Agye1=Aqgyc 3 in this case. Setting=2, however, maps the with the standard finite-size behavior according to &)

four Potts states onto themselves according 40312—4,  within the error bars, logarithmic corrections to Eg.8)
which is not equivalent to the former two choiceskofind cannot be identified. Forg(k)=(4,1) the Gaussian model
therefore the relation of\. ., to the other amplitudes for with antiperiodicboundary conditions does not represent the
g=4 remains to be determined. critical finite-size behavior of the Potts model.

Unlike periodic boundary conditions cyclic boundary con-  Averaging the Monte Carlo estimates g ;+2A,, for
ditions for k>0 introduce an interiomterfaceinto the sys- L=28 and combining them with the corresponding estimates
tem which has a critical finite-size behavior of its own. Al- for A ., we obtain our final estimates fax., ;. The results
though the interfacial tension is a part of the finite-sizetogether with estimates fog(k) =(3,2) and (g,k) =(4,2) and
contribution to the free energy in a strip or a slab geometry4,3) are summarized in Table I. The exact results der2
by definition[see Eq.(1.2)], the inevitable finiteness of our andqg=3 [13] and the corresponding results for the critical
lattices introduces finite-size corrections due to fiteto  one-component Gaussian model épr4 are given for com-
the interfacial tensiofi21] which need to be compensated. It parison. The Casimir effect for the four-state Potts model
is for this reason that, by virtue of Eq2.8), only A,  with cyclic boundary conditions is independentiofor k=1

FIG. 5. Casimir amplituded., , for the fixed aspect ratis=

% as a function ofL for q=2 (diamond, q=3 (circle), and q=4
(square. Theoretical values are indicated by the solid lifep
=2[13)), the dotted line(q=3[13]), and the dash-dotted ling
=4, one-component Gaussian mgdd&rror bars are not displayed
whenever they are smaller than the symbol sizepresenting one
standard deviation

+2A e can be measured directly rather thiag, itself (see
also Sec. Il

As in our Monte Carlo studies for periodic boundary con-

ditions (see Fig. 3 we fix the aspect ratio te=3 and mea-

within our error bars. The amplitudes given in Table | for
k=1 must be considered affectiveamplitudes, because
they are derived from Eq2.8), where logarithmic correc-
tions have been disregarded.

sureAqc 1124, for a sequence of lattices with £2 <40 We close this section with a few comments on the histo-
and forg=2,3,4 from a multiple histogram analysis of 11 gram distribution for cyclic boundary conditions with respect
histograms(see below. The number of Monte Carlo steps to the split parametex. It has already been pointed out, that
per histogram for equilibratiofi>100 autocorrelation times the histograms must be carefully positioned in order to guar-
and measurement remain the same as in the case of periodiotee sufficient overlap between neighboring histograms. It
boundary conditions. For eadh we obtain an estimate for turns out, that this positioning of the histograms is also quite
Acycq from the previously made estimate fdr,, for the  sensitive to the boundary conditions. An example fork{
same value of.. This allows us to study the decay of finite =(4,1) is shown in Fig. 6, where the typical histogram dis-
mesh size effects of the lattice an,, with increasingL. tribution for cyclic boundary conditions arid X L =320x40

The result is displayed in Fig. 5. Fgr=2 andq=3 the exact is displayed. Compared to Fig. 4 the histograms are almost
values ofAg 4 [13] in an infinite strip geometry are indi- symmetrically arranged around=0.5 and are not as sharply
cated by the solid and the dashed line, respectively. Withipeaked neaa=0.5. Furthermore, the histograms can be
the error bars, the estimated values approach the exact onewre evenly spaced with respectiXdn order to cover the
monotonically from above ak increases. Fog=4 and the entire range of seam energies with sufficient overlap be-
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TABLE 1. Casimir amplitudesA for the critical g-state Potts model confined to a stripds=2 with
periodic and cyclic boundary conditioiisee main text Forq=2 andq=3 the exact resultgl3] are shown
for comparison in parenthesis. Fqr=4 the corresponding amplitudes for a critical Gaussian model are

displayed.
q Aper Acyc,l Acyc,2 Acyc,3
2 —0.2623+-0.0010 0.5242:0.0039
i a w a
(—1—2:—0.261% (gﬁO.SZS%
3 —0.4201+-0.0025 0.425%0.0103 0.42480.0101
2m 04189a 2 0.418 ’ 2 04189a
15 15 15
4 —0.5268-0.0039 0.34320.0136 0.350%0.0136 0.34250.0136
T b T b w b w b
( 5" —0.52369 (1—220.261% (1—220.261% (1—2:0.261%
aRef. [13].

bGaussian model.

tween subsequent histograms than for periodic boundar€asimir effect in a wetting layegisee Sec.)lit is the relevant
conditions. The number of histogranikl in Fig. 6 can be
reduced to 9 without changing the final estimates£gy

noticeably.

universality class for a film of a binary liquid mixture near
the critical end point of the demixing transitiof$1,12,
where surface fields have to be included. Unlike its two-

‘The Monte Carlo results presented above are mainly obdimensional counterpart the nearest neighbor gpising
tained from the R1279 random number generator. For botfhodel ind=3 [see Eq(2.3)] is still lacking a rigorous treat-
the periodic and the cyclic boundary conditions and all val-ment. Therefore the Casimir amplitudascan also only be

ues ofg several series of runs have been repeated using thestimated with uncertain numerical accurf@yl4]. Accord-
CONG, the SWC and the R250 random number generatof,q 1o the results presented in the previous section, however,

The mutual deviations in the final estimates forwere al-

ways smaller than the statistical error.

IV. CASIMIR AMPLITUDES FOR THE d=3

ISING MODEL

In three dimensions the Ising universality class incorpo
rates critical phenomena in the vicinity of a simple liquid-
vapor critical point and it therefore has the most widesprea
realizations of any universality class. With respect to the .

8
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FIG. 6. Histograms\, (Egean for (q,k)=(4,1) andM XL =320
X40. The seam enerd¥.,miS given in units of the coupling con-
stantJ. Fromright to left N, is shown for increasing. Note the
difference in the dependence of thkeapeof N, on \ as compared

to the periodic boundary conditiorisee Fig. 4.

the prospects for the Monte Carlo algorithm presented here
to substantially improve the currently known estimatesXor
in d=3 seem to be very good.

A lattice resembling an infinite slab oh=3 contains typi-
cally 100 times more lattice sites than its counterparts in
d=2. In order to cope with the corresponding increase in

demand for computational resources we have parallelized

ur hybrid algorithm in a way suitable for an IBM SP2 uti-
1zing its high bandwidth, low latency switches for commu-
nication. The parallization schenjig7] uses four processors
one of which equilibrates the system and generates a se-
quence of equilibrium spin configurations using the Wolff
algorithm. The remaining three processors perform Metropo-
lis updates of a previously generated configuration in order
to set up histograms of the seam eneEy,,and measure
other quantities like the energy density, the specific heat, the
magnetization, and the magnetic susceptibility for control
purposes. Configurations are provided by the Wolff process
and sent to the Metropolis processes whenever one is ready
to receive a new configuration. The idle time of the proces-
sors is minimized by adjusting the number of Wolff and
Metropolis updates performed in the interval between the
broadcasts of the new configurations. Typically, the Wolff
process sends a new configuration every four updates and a
Metropolis process performs seven updates for measure-
ments, which yields a parallel efficiency between 75% and
85% depending on the system size.

Following the procedure described in the previous section

for d=2, we probe the Casimir amplituds,, for the peri-
odic boundary conditions using E.9) as a function of the
aspect ratis=L/M=<1 and varyingL between 12 and 24.
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FIG. 7. Casimir amplitude\,, (periodic boundary conditions FIG. 8. Casimir amplitude , for the fixed aspect ratie=; as

for the Ising universality class id=3 as function of the aspect ratio 4 fynction ofL for the critical Ising model. The solid line indicates

s for L=16 (diamond, L =20 (circle), and L=24 (squar¢. The oy final Monte Carlo estimate fak,, [see Eq(4.1)]. The size of
Monte Carlo results fog<s<1 are displayed. The relative statisti- each error bar represents one standard deviation.

cal error is<4% for all s. The error bars folL=16 have been

moved to the left and those for=24 have been moved to the right d

for clearity. The size of each error bar represents one standard de- A= —g-d2p| 2 Z(d)
viation. per 2

54—-d

1-77—4 42

After equilibrating the system for £0wolff updates(typi- Note that Eq.(4.2) reproduces both the expansion to the
cally >10 autocorrelation timgswe have used a total of first order ford=4—¢ and the exact result fat=2. Ford=3
1.1x 10> Wolff updates per histogram for the measurementsEq. (4.2 yields the estimated ,~—0.13, which improves
for each system size. In order to guarantee sufficient overlafhe puree-expansion result, but still remains far outside the
between subsequent histograms even for the largest latticsgatistical error of our Monte Carlo estimate given by Eq.
used in this investigation, we have used 25 histograms of4.1).

Eceam fOr all system sizes in the final multiple histogram  Finally, we have studied the decay of the finite mesh size
analysis. As an example we show the results fosll&24  effects on our estimates fa¥,, with increasingL for a se-
and 1/6ss<1 in Fig. 7. In comparison witll=2 (see Fig. quence of lattices with 2L <20 at a fixed aspect ratig=

2), Aper does not vary as much with the aspect ratiand, % of our slab geometry. The Casimir amplitudg,, accord-
within the error bars, the infinite slab limg=0 is already ing to Eq.(2.9 as a function ofL is shown in Fig. 8, the
reached fors=1/6. Furthermore, Fig. 7 shows that the esti-solid line indicates our estimate fa,., according to Eq.
mates forApe, as functions ofs have already become inde- (4.1). As ford=2 (see Fig. 3the estimates foA,, approach
pendent ofL for L=20. ForL=16 there are still traces of the solid line monotonically from below ds increases, but
small systematic deviations due to finite mesh size effecteffects of the finite mesh size of the lattice decay consider-
present in our data. The increase in the error bars for increasbly faster. FolL =16 these effects are already smaller than
ing L is due to increasing autocorrelation times and decreaghe statistical error.

ing overlap between neighboring histograms. Furthermore, We close our presentation with a few comments on the
the error bars show the tendency to increase wifto the typical histogram distribution id=3, which we do not re-
right in Fig. 7), because the histograms contain fewer entrieproduce here. In contrast to the two-dimensional case shown
for smaller values oM. The relative statistical errors are in Fig. 4 the histogramBl, can be almost evenly spaced with
between two and four times as large aglin2 which is due respect tan. Furthermore, the shape bf, varies much less

to both larger autocorrelation times and poorer statistics iwith \ than ind=2, which simplifies the positioning of the
d=3. Averaging the values ol from our Monte Carlo histograms considerably. In order to guarantee sufficient
data obtained fol.=20 andL=24 for the aspect ratios overlap between neighbor histograms, roughly twice as

s=1/4 ands=1/6, we obtain our final estimate many histograms as for the corresponding two-dimensional
case are required, although the range of seam energies has
Ape= —0.1526+0.0016 4.9 increased by more than an order of magnitude. Maintaining

sufficient overlap, however, has become much more de-
for the critical Ising model ird=3. For comparison one ob- manding, because the range of seam energigg,to be
tains Aye~—0.11 from ane expansion(e=4—d) up to first  covered grows aM?in d=3.
order in € [9]. Combining a partial resummation of the
expansion with an interpolation scheme using the exact re-
sult A,e=—m/12 for the Ising(two-state Potts model in
d=2 one obtains the following approximate interpolation From the basic mechanism underlying the well-known
formula for A, as a function of the spatial dimensiah ~ Casimir effect in electromagnetism it is clear that critical
within the Ising universality clasi9] fluctuations in a confined system lead to a critical finite-size

V. SUMMARY AND OUTLOOK
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contribution to its free energy, which is the direct analoguealgorithm larger lattice sizes must be considered. In order to
of the Casimir effect given by Edq1.1). At the critical point  avoid larger lattices, the accordingly increased autocorrela-
of the system this finite-size contribution to the free energytion times, and the resulting additional demand for computa-
can be characterized by thmiversalCasimir amplitudes\  tional resources the algorithm must be modified to include,
[see Egs.(1.2) and (1.4)], which in d=3 dimensions are e.g., anisotropic coupling constants. Further studies with this
experimentally accessible by, e.g., a wetting experinfi@ht  modified version of our algorithm are currently under way.
We have presented a Monte Carlo algorithm which is ca- In d=3 we have investigated a critical Ising model con-
pable of probing these Casimir amplitudes for a critical sysfined to a slab geometry with periodic boundary conditions
tem confined to a strigd=2) or slab(d=3) geometry with  for which no exact results are known. In order to deal with
considerable accuracy. The statistical errors are small enoughe drastically enhanced demand for computational resources
to probe the dependence of our estimatesffan the aspect in this case we have parallelized our algorithm in a way
ratio s of the lattice and the numbedr of lattice rows or suitable for an IBM SP2 utilizing four processors in parallel.
lattice planes ird=2 or d=3, respectively. We have found that\,, varies only half as much with the

In d=2 our Monte Carlo estimates of the Casimir ampli- aspect ratio than it does id=2 and that the infinite slab
tudes for the critical-state Potts model confined to a slab limit is already reached fos=1/6. Furthermore, effects of
geometry with periodic and cyclic boundary conditions agreehe finite mesh size of the lattice decay faster thad=2 so
very well with exact results fog=2 andq=3. Forq=4 and that the overall lattice sizes could be kept moderately small
periodic boundary condition&,, agrees very well with the in our simulation. Existing field-theoretic estimates for the
corresponding value for the critical one-component Gaussia@asimir amplitudeA, for the Ising universality class in
model, as expected from conformal field thedgee Eq. d=3 remain far outside the statistical error of our final
(3.2) and Ref.[34]). For g=4 and cyclic boundary condi- Monte Carlo estimatgésee Eq.(4.1)].
tions we have extracted aeffective Casimir amplitude As far as other boundary conditions, especially those
Acye1=Acyc2 =Acyc,3 from Eq. (2.8), which does not match characterized by magnetized surfaces, are concerned, the
Agpe=Agyc 1 for the critical one-component Gaussian modelsituation is similar to the two-dimensional case. The pres-
confined to a strip with antiperiodic boundary conditions.ence of the surfaces requires an appropriate customization
Logarithmic corrections to the critical finite-size behavior of and further testing of the algorithm, which is currently under
the free energy, which would also appear in Efj8), remain  way.
unresolvable within our error bars.

For other boundary conditions such as the application of
surface fields, which generagurface contributions to the
free energy, the criticaf]-state Potts model confined to a  We gratefully acknowledge many useful discussions with
strip geometry also provides the natural testing ground foA. M. Ferrenberg and K. K. Mon. One of (M. Krech) was
our algorithm. The presence of these surfaces, however, esupported through the Feodor Lynen program of the Alex-
hances effects of the finite mesh size of the lattice on the freender von Humboldt Foundation. This research was also sup-
energy substantially, so that with the present version of ouported in part by NSF Grant No. DMR-9405018.
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